
A Quick Introduction to Pd-Lua
Albert Gräf <aggraef@gmail.com>
Computer Music Dept., Institute of Art History and Musicology
Johannes Gutenberg University (JGU) Mainz, Germany
August 2024

This document is licensed under CC BY-SA 4.0. Other formats: Markdown source, PDF
Permanent link: https://agraef.github.io/pd-lua/tutorial/pd-lua-intro.html

Why Pd-Lua?
Pd's facilities for data structures, iteration, and recursion are somewhat limited, thus sooner or later you'll
probably run into a problem that can't be easily solved by a Pd abstraction any more. At this point you'll have
to consider writing an external object (or just external, for short) in a "real" programming language instead. Pd
externals are usually programmed using C, the same programming language that Pd itself is written in. But
novices may find C difficult to learn, and the arcana of Pd's C interface may also be hard to master.

Enter Pd-Lua, the Pd programmer's secret weapon, which lets you develop your externals in the Lua scripting
language. Pd-Lua was originally written by Claude Heiland-Allen and has since been maintained by a number
of other people in the Pd community. Lua, from PUC Rio, is open-source (under the MIT license), mature, very
popular, and supported by a large developer community. It is a small programming language, but very
capable, and is generally considered to be relatively easy to learn. For programming Pd externals, you'll also
need to learn a few bits and pieces which let you interface your Lua functions to Pd, as explained in this
tutorial, but programming externals in Lua is still quite easy and a lot of fun. Using Pd-Lua, you can program
your own externals ranging from little helper objects to full-blown synthesizers, sequencers, and algorithmic
composition tools. It gives you access to Pd arrays and tables, as well as a number of other useful facilities
such as clocks and receivers, which we'll explain in some detail. Pd-Lua also ships with a large collection of
instructive examples which you'll find helpful when exploring its possibilities.

Pd-Lua was originally designed for control processing, so we used to recommend Faust for doing dsp instead.
We still do, but Faust isn't for everyone; being a purely functional language, Faust follows a paradigm which
most programmers aren't very familiar with. Fortunately, thanks to the work of Timothy Schoen, the most
recent Pd-Lua versions now also provide support for signal processing and even graphics. So it is now possible
to create pretty much any kind of Pd object in Lua, including dsp objects. (However, Faust will almost certainly
execute dsp code much more efficiently than Pd-Lua, as it generates highly optimized native code for just this
purpose.)

Note that we can't possibly cover Pd or the Lua language themselves here, so you'll have to refer to other
online resources to learn about those. In particular, check out the Lua website, which has extensive
documentation available, and maybe have a look at Derek Banas' video tutorial for a quick overview of Lua.
For Pd, we recommend the Pd FLOSS Manual at https://flossmanuals.net/ to get started.

Installation
Pd-Lua works inside any reasonably modern Pd flavor. This encompasses vanilla Pd, of course, but also Purr
Data which includes an up-to-date version of Pd-Lua for Lua 5.4 and has it enabled by default, so you should
be ready to go immediately; no need to install anything else. The same is true for plugdata (version 0.6.3 or
later), a Pd flavor which can also run as a plug-in inside a DAW.

1 / 53

af://n0
mailto:aggraef@gmail.com
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/agraef/pd-lua/blob/master/tutorial/pd-lua-intro.md
https://github.com/agraef/pd-lua/blob/master/pdlua/tutorial/pd-lua-intro.pdf
https://agraef.github.io/pd-lua/tutorial/pd-lua-intro.html
af://n5
https://www.lua.org/
http://www.puc-rio.br/
https://faust.grame.fr/
https://www.lua.org/docs.html
https://www.youtube.com/watch?v=iMacxZQMPXs
https://flossmanuals.net/
af://n10
http://msp.ucsd.edu/software.html
https://agraef.github.io/purr-data/
https://agraef.github.io/purr-data/
https://agraef.github.io/purr-data/
https://plugdata.org/

With vanilla Pd, you can install the pdlua package from Deken. There's also an official Debian package,
maintained by IOhannes Zmölnig. You can also compile Pd-Lua from source, using the author's Github
repository. Compilation instructions are in the README, and you'll also find some Mac and Windows binaries
there. In either case, after installing Pd-Lua you also have to add pdlua to Pd's startup libraries.

If all is well, you should see a message like the following in the Pd console (note that for vanilla Pd you'll have
to switch the log level to 2 or more to see that message):

This will also tell you the Lua version that Pd-Lua is using, so that you can install a matching version of the
stand-alone Lua interpreter if needed. Lua should be readily available from your package repositories on
Linux, and for Mac and Windows you can find binaries on the Lua website. In the following we generally
assume that you're using Lua 5.3 or later (using Lua versions older than 5.3 is not recommended).

If all is not well and you do not see that message, then most likely Pd-Lua refused to load because the Lua
library is missing. This shouldn't happen if you installed Pd-Lua from a binary package, but if it does then you
may have to manually install the right version of the Lua library to make Pd-Lua work. Make sure that you
install the package with the Lua library in it; on Debian, Ubuntu and their derivatives this will be something like
liblua5.4-0.

A basic example
With that out of the way, let's have a look at the most essential parts of a Lua external. To make an external,
say foo , loadable by Pd-Lua, you need to put it into a Lua script, which is simply a text file with the right name

(which must be the same as the object name, foo in this case) and extension (which needs to be .pd_lua), so

the file name will be foo.pd_lua in this example.

Any implementation of an object must always include:

a call to the pd.Class:new():register method which registers the object class with Pd (this should

always be the first line of the script, other than comments)

a definition of the initialize method for your object class

Here is a prototypical example (this is the contents of the foo.pd_lua file):

Note that in the first line we called pd.Class:new():register with the name of the object class as a string,
which must be the same as the basename of the script, otherwise Pd's loader will get very confused, create the
wrong object class, print a (rather cryptic) error message, and won't be able to create the object.

We also assigned the created class (which is represented as a Lua table) to a variable foo (which we made

local to the script file here, as explained below). We need that variable as a qualifier for the methods of the
object class, including initialize . You can actually name that variable whatever you want, as long as you use

that name consistently throughout the script. This can be useful at times, if the actual class name you chose,

pdlua 0.12.4 (GPL) 2008 Claude Heiland-Allen, 2014 Martin Peach et al.

pdlua: compiled for pd-0.55 on Aug 24 2024 00:51:01

Using lua version 5.4

local foo = pd.Class:new():register("foo")

function foo:initialize(sel, atoms)

 return true

end

2 / 53

https://salsa.debian.org/multimedia-team/pd/pd-lua
https://github.com/agraef/pd-lua
https://github.com/agraef/pd-lua
https://github.com/agraef/pd-lua
af://n17

as it is known to Pd and set with pd.Class:new():register (as well as being the basename of your .pd_lua

script), is a jumble of special characters such as fo:o#?! , which isn't a valid Lua identifier.

Next comes the initialize method, which is implemented as a Lua function, prefixing the method name

with the name of the class variable we created above and a colon, i.e., foo:initialize . (This colon syntax is
used for all functions that represent methods, which receive the called object as an implicit self parameter;

please check the section on function definitions in the Lua manual for details.) As a bare minimum, as is shown
here, this method must return true , otherwise the loader will assume that the object creation has failed, and

will complain that it couldn't create the object with an error message.

We mention in passing here that Pd-Lua also provides a parameter-less postinitialize method which can
be used to execute code after the object has been created, but before the object starts processing messages.
We'll see an example of this method later.

NOTE: Pd-Lua runs all Lua objects in the same instance of the Lua interpreter. Therefore, as a general
guideline, we want to keep the global name space tidy and clean. That's why we made foo a local variable,

which means that its scope is confined to this single script. Note that this isn't needed for the member
variables and methods, as these are securely stowed away inside the object and not accessible from the
outside anyway, if the class variable is local . But the same caveat applies to all variables and functions in the

script file that might be needed to implement the object, so normally you want to mark these as local , too

(or turn them into member variables and methods, if that seems more appropriate).

We mention in passing that global variables and functions may also have their uses if you need to share a
certain amount of global state between different Lua objects. But even then it's usually safer to have the
objects communicate with each other behind the scenes using receivers, which we'll explain later.

To actually use the object class we just created, Pd needs be able to find our foo.pd_lua file. We'll discuss
different approaches in the following section, but the easiest way to achieve this is to just drop foo.pd_lua into
the directory that your patch is in (say, pd-lua in your home directory). Now we can just create our first foo
object (hit Ctrl+1, then type the object name foo), and we should see something like this:

3 / 53

Hooray, it works! :)) Well, this object doesn't do anything right now, so let's equip it with a single inlet/outlet
pair. This is what the initialize method is for, so we have to edit that method accordingly.

NB: If you closed the editor already and don't remember where the file is, you can just right-click the object
and choose Open , which will open the .pd_lua file in your favorite text editor, as configured in your desktop

and/or shell environment.

Note that, as we already mentioned, the self variable here is an implicit parameter of any Lua method, which
refers to the object itself. Every Pd-Lua object has two member variables inlets and outlets which let us

specify the number of inlets and outlets our object should have. This needs to be done when the object is
initialized; afterwards, the number of inlets and outlets is set in stone and can't be changed any more.

Next, we have to make sure that Pd picks up our edited class definition. Since the Pd-Lua loader will never
reload the .pd_lua file for any given object class during a Pd session, we will have to save the patch, quit Pd,
relaunch it and reopen the patch:

local foo = pd.Class:new():register("foo")

function foo:initialize(sel, atoms)

 self.inlets = 1

 self.outlets = 1

 return true

end

4 / 53

So there, we got our single inlet/outlet pair now. To do anything with these, we finally have to add some
message handlers to our object. Say, for instance, we want to handle a bang message by incrementing a
counter and outputting its current value to the outlet. We first have to initialize the counter value in the
initialize method. As we want each foo object to have its own local counter value, we create the counter
as a member variable:

It's not necessary to declare the self.counter variable in any way, just give it an initial value and be done
with it. Finally, we have to add a method for the bang message, which looks as follows:

function foo:initialize(sel, atoms)

 self.inlets = 1

 self.outlets = 1

 self.counter = 0

 return true

end

function foo:in_1_bang()

 self.counter = self.counter + 1

 self:outlet(1, "float", {self.counter})

end

5 / 53

We'll dive into the naming conventions for message handlers later, but note that in_1 specifies the first (and

only) inlet and bang the kind of message we expect. In the body of the method we increment the
self.counter value and output its new value on the first (and only) outlet. This is done by the predefined

self:outlet method which takes three arguments: the outlet number, the (Pd) data type to output, and the

output value itself. (In general, it's possible to have multiple values there, e.g., when outputting a list value.
Therefore the output value is always specified as a Lua table, hence the curly braces around the float output
value.)

Throwing everything together, our Lua external now looks as follows:

So let's relaunch Pd, reload the patch again, and add some GUI elements to test it out:

local foo = pd.Class:new():register("foo")

function foo:initialize(sel, atoms)

 self.inlets = 1

 self.outlets = 1

 self.counter = 0

 return true

end

function foo:in_1_bang()

 self.counter = self.counter + 1

 self:outlet(1, "float", {self.counter})

end

6 / 53

Note that this is still a very basic example. While the example is complete and fully functional, we have barely
scratched the surface here. Pd-Lua also allows you to process an object's creation arguments (employing the
atoms parameter of the initialize method, which we didn't use above), log messages and errors in the Pd

console, create handlers for different types of input messages, output data to different outlets, work with Pd
arrays, clocks, and receivers, and even do some live coding. We will dive into each of these topics in the
following sections.

Where your Lua files go
As already mentioned, the externals (.pd_lua files) themselves can go either into the directory of the patch
using the external, or into any other directory on Pd's search path (on Linux, this generally includes, ~/.pd-
externals, or ~/.pd-l2ork-externals when running pd-l2ork or purr-data).

The Lua loader temporarily sets up Lua's package.path so that it includes the directory with the external, so

you can put any Lua modules (.lua files) required by the external into that directory.

NOTE: As of Pd-Lua 0.12.5, the same is true for the pdlua external directory, where you can put any Lua
modules that should be readily available to all your Pd-Lua objects. One example of this is Pd-Lua's own
pdx.lua live-coding module which we'll discuss later, but it can also be used for general Lua utility modules that
you want to use. There are a lot of incredibly useful Lua libraries out there, such as kikito 's inspect or
lunarmodules' penlight, although you might prefer to install these using LuaRocks, Lua's most popular
package manager.

7 / 53

af://n53
https://github.com/kikito/inspect.lua
https://github.com/lunarmodules/Penlight
https://luarocks.org/

If you need/want to use Lua libraries from other locations which aren't on the standard Lua package.path ,

then you'll have to set up the LUA_PATH environment variable accordingly. LuaRocks usually takes care of this
for you when set up properly. Otherwise you can set LUA_PATH manually in your system startup files, such as

~/.bashrc or ~/.xprofile on Linux. E.g.:

Note that ? is a placeholder for the module name, the semicolon ; can be used to separate different
locations, and a double semicolon ;; adds Lua's standard search path (make sure that you quote those

special characters so that the shell doesn't try to interpret them). You should always include the double
semicolon somewhere, otherwise the Lua interpreter won't be able to find its standard library modules any
more. Also note that you may want to place the ;; in front of the path instead, if the standard locations are to
be searched before your custom ones.

Creation arguments
Besides the implicit self argument, the initialize method has two additional parameters:

sel , the selector argument, is a string which contains the Pd name of the object class. You probably

won't need this, unless you want to use it for error reporting, or if you have a generic setup function for
several related object classes. We won't go into this here.

atoms is a Lua table which contains all the arguments (Pd "atoms", i.e., numbers or strings) an object was

created with. #atoms gives you the number of creation arguments (which may be zero if none were
specified), atoms[1] is the first argument, atoms[2] the second, and so on. As usual in Lua, if the index

i runs past the last argument, atoms[i] returns nil .

For instance, let's say that we want to equip our foo object with an optional creation argument, a number, to

set the initial counter value. This can be done as follows:

Here we check that the first creation argument is a number. In that case we use it to initialize the counter

member variable, otherwise a default value of 0 is set. Note that if there is no creation argument, atoms[1]
will be nil which is of type "nil" , in which case the zero default value will be used.

Note that currently our bang handler outputs the value after incrementing it, which seems a bit awkward now
that we can actually specify the counter's start value. Let's rework that method so that it spits out the current
value before incrementing it:

export LUA_PATH=~/lua/'?.lua;;'

function foo:initialize(sel, atoms)

 self.inlets = 1

 self.outlets = 1

 if type(atoms[1]) == "number" then

 self.counter = atoms[1]

 else

 self.counter = 0

 end

 return true

end

8 / 53

af://n62

Note that it's perfectly fine to invoke self:outlet at any point in the method.

While we're at it, we might as well add an optional second creation argument to specify the step value of the
counter. Try doing that on your own, before peeking at the solution below!

Got it? Good. Here is our final script:

That was easy enough. If you've been following along, you also know by now how to reload the patch and add
a few bits to test the new features. For instance:

function foo:in_1_bang()

 self:outlet(1, "float", {self.counter})

 self.counter = self.counter + 1

end

local foo = pd.Class:new():register("foo")

function foo:initialize(sel, atoms)

 self.inlets = 1

 self.outlets = 1

 if type(atoms[1]) == "number" then

 self.counter = atoms[1]

 else

 self.counter = 0

 end

 if type(atoms[2]) == "number" then

 self.step = atoms[2]

 else

 self.step = 1

 end

 return true

end

function foo:in_1_bang()

 self:outlet(1, "float", {self.counter})

 self.counter = self.counter + self.step

end

9 / 53

Log messages and errors
As soon as your objects get more complicated, you'll probably want to add some messages indicating to the
user (or yourself) what's going on inside the object's methods. To these ends, Pd-Lua provides the following
two facilities which let you output text messages to the Pd console:

pd.post(msg) outputs the string msg to the console on a separate line. You can also post multi-line

messages by embedding newline (\n) characters in the msg string. This is also frequently used for

debugging purposes, e.g., to print out incoming messages or intermediate values that your code
calculates.

self:error(msg) reports an error message, given as a string msg , to the console. These messages are
printed in red, to make them stand out, and you can use the "Find Last Error" menu option to locate the
object which reported the error. (In Purr Data it's also possible to just click on the "error" link in the
console to locate the object.) Note that self:error simply prints the message in a way that ties in with

"Find Last Error". It doesn't abort the method that executes it, or have any other grave consequences.
Thus you can also use it for debugging purposes, like pd.post , if you need to trace the message back to
the object it came from.

For instance, let's use these facilities to have our foo object post the initial counter value in the initialize

method, as well as report an error if any of the given creation arguments is of the wrong type. Here is the
suitably modified initialize method:

function foo:initialize(sel, atoms)

10 / 53

af://n80

And here's how the console log looks like after loading our test patch, and creating an erroneous foo bad

object:

 self.inlets = 1

 self.outlets = 1

 self.counter = 0

 self.step = 1

 if type(atoms[1]) == "number" then

 self.counter = atoms[1]

 elseif type(atoms[1]) ~= "nil" then

 self:error(string.format("foo: #1: %s is of the wrong type %s",

 tostring(atoms[1]), type(atoms[1])))

 end

 if type(atoms[2]) == "number" then

 self.step = atoms[2]

 elseif type(atoms[2]) ~= "nil" then

 self:error(string.format("foo: #2: %s is of the wrong type %s",

 tostring(atoms[2]), type(atoms[2])))

 end

 pd.post(string.format("foo: initialized counter: %g, step size: %g",

 self.counter, self.step))

 return true

end

11 / 53

Note that the foo bad object was still created with the appropriate defaults after the error message, so the

initialize method ran through to the end alright. If you want the object creation to fail after printing the
error message, you only have to add a return false statement in the elseif branch, after the call to

self:error . Try it! (Of course, you won't be able to locate the object using the printed error message in this

case, since the object wasn't actually created. But "Find Last Error" will still work, since Pd itself will also print a
"couldn't create" error message.)

Here's another fun exercise: Let's have foo print a welcome message when it first gets invoked. This can be

done by adding a variable init to the foo class itself, which is shared between different object instances, as
follows:

You should put this after the definition of foo (i.e., after the line with the pd.Class:new() call), but before

any code that uses this variable. Note that we could also just have used an ordinary local variable at script level
instead, but this illustrates how you create static class members in Lua.

You still have to add the code which outputs the welcome message. An obvious place for this is somewhere in
initialize , but here we use the postinitialize method for illustration purposes:

This will print the message just once, right after the first foo object is created. There's another finalize

method which can be used to perform any kind of cleanup when an object gets destroyed. For instance, let's
rework our example so that it keeps track of the actual number of foo objects, and prints an additional

message when the last foo object is deleted. To these ends, we turn foo.init into a counter which keeps
track of the number of foo objects:

Here are the messages logged in the console if we now load our test patch and then go on to delete all foo

objects in it:

foo.init = false

function foo:postinitialize()

 if not foo.init then

 pd.post("Welcome to foo! Copyright (c) by Foo software.")

 foo.init = true

 end

end

foo.init = 0

function foo:postinitialize()

 if foo.init == 0 then

 pd.post("Welcome to foo! Copyright (c) by Foo software.")

 end

 foo.init = foo.init + 1

end

function foo:finalize()

 foo.init = foo.init - 1

 if foo.init == 0 then

 pd.post("Thanks for using foo!")

 end

end

12 / 53

Lua errors

We all make mistakes. It's inevitable that you'll run into errors in the Lua code you wrote, so let's finally discuss
how those mishaps are handled. Pd-Lua simply reports errors from the Lua interpreter in the Pd console. For
instance, suppose that we mistyped pd.post as pd_post in the code for the one-time welcome message

above. You'll see an error message like this in the console:

In this case the error happened in the initialize method, so the object couldn't actually be created, and you
will have to correct the typo before going on. Fortunately, the message tells us exactly where the error
occurred, so we can fix it easily. Syntax errors anywhere in the script file will be caught and handled in a similar
fashion.

Runtime errors in inlet methods, on the other hand, will allow your objects to be created and to start
executing; they just won't behave as expected and cause somewhat cryptic errors to be printed in the console.
For instance, let's suppose that you forgot the curly braces around the float value in self:outlet (a fairly

common error), so that the method reads:

Lua is a dynamically-typed language, so this little glitch becomes apparent only when you actually send a bang
message to the object, which causes the following errors to be logged in the console:

Ok, so the first message tells us that somewhere Pd-Lua expected a table but got a non-table value. The second
message actually comes from the C routine deep down in the bowls of Pd-Lua which does the actual output to
an outlet. If you see that message, it's a telltale sign that you tried to output an atom not properly wrapped in
a Lua table, but it gives no indication of where that happened either, other than that you can use "Find Last
Error" to locate the object which caused the problem.

It goes without saying that the Pd-Lua developers could have chosen a better error message there. Well, at
least we now have an idea what happened and in which object, but we may then still have to start peppering
our code with pd.post calls in order to find (and fix) the issue.

foo: initialized counter: 0, step size: 1

Welcome to foo! Copyright (c) by Foo software.

foo: initialized counter: 5, step size: 1

foo: initialized counter: 0, step size: 5

Thanks for using foo!

error: pdlua_new: error in constructor for `foo':

[string "foo"]:7: attempt to call a nil value (global 'pd_post')

error: couldn't create "foo"

function foo:in_1_bang()

 self:outlet(1, "float", self.counter) -- WRONG!

 self.counter = self.counter + self.step

end

error: lua: error: not a table

... click the link above to track it down, or click the 'Find Last Error' item in the Edit

menu.

error: lua: error: no atoms??

13 / 53

af://n101
af://n111

Inlets and outlets
As we've already seen, the number of inlets and outlets is set with the inlets and outlets member

variables in the initialize method of an object. You can set these to any numbers you want, including zero.
(In the current implementation, fractional numbers will be truncated to integers, and negative numbers will be
treated as zero. If the variables aren't set at all, they also default to zero.)

Inlets

Let's have a look at the inlets first. Pd-Lua supports a number of different forms of inlet methods which enable
us to process any kind of Pd message. In the following list, "1" stands for any literal inlet number (counting the
inlets from left to right, starting at 1), and "sym" for any symbol denoting either one of the predefined Pd
message types (bang, float, symbol, pointer, and list), or any other (selector) symbol at the beginning of a Pd
meta message. Note that, as usual, in your code these methods are always prefixed with the class name, using
Lua colon syntax.

in_1_sym(...) matches the given type or selector symbol on the given inlet; the method receives zero

or one arguments (denoted ... here), depending on the selector symbol sym , see below

in_n_sym(n, ...) (with a verbatim "n" replacing the inlet number) matches the given type or selector

symbol on any inlet; the actual inlet number is passed as the first argument (denoted n here), along with
the zero or one extra arguments ... which, like above, depend on the selector symbol sym

in_1(sel, atoms) matches any type or selector symbol on the given inlet; the type or selector symbol is
passed as a string sel , and the remaining arguments of the message are passed as a Lua table atoms

containing number and string values

in_n(n, sel, atoms) matches any type or selector symbol on any inlet; the method is invoked with the

inlet number n along with type/selector symbol sel and the remaining message arguments in the Lua

table atoms

These alternatives are tried in the indicated order, i.e., from most specific to most general. In addition, Pd-Lua
understands the following specific sym type selectors and adjusts the number and type of the extra ...
arguments accordingly:

bang denotes a bang message and passes no arguments

float denotes a Pd float value, which is passed as a number argument

symbol denotes a Pd symbol, which is passed as a string argument

pointer denotes a Pd pointer, which is passed as a Lua userdata argument

list denotes a Pd list, which is passed as a Lua table argument containing all the list elements

any other sym value is taken as a literal Pd symbol to be matched against the selector symbol of the
incoming message; the remaining arguments of the message are passed as a Lua table argument

Note that there can only be zero or one additional arguments in this case (besides the inlet number for
in_n_sym). In contrast, the two most generic kinds of methods, in_1 and in_n , always have the

type/selector symbol sel (a string) and the remaining message arguments atoms (a Lua table) as arguments.

Among these, the methods for bang , float , and list are probably the most frequently used, along with

in_1 or in_n as a catch-all method for processing any other kind of input message. We've already employed

the in_1_bang method in our basic example above. Here are some (rather contrived) examples for the other
methods; we'll see some real examples of some of these later on.

14 / 53

af://n111
af://n113

(Note that we omitted the pointer type in the above examples, as it is rarely used in Lua externals. But if you
want, you can also receive such values, which will be represented as "userdata" a.k.a. C pointers on the Lua
side. In Lua 5.4 it is possible to print such values using the %p format specifier of string.format , while in

older Lua versions you will have to use the Lua tostring() function for this purpose.)

Outlets

Luckily, things are much simpler on the output side. As we've already seen, to output a message to an outlet,
you simply call self:outlet(n, sel, atoms) with the following arguments:

n is the outlet number, counting from left to right, starting at 1

sel is the type or selector symbol of the message; all the usual Pd type symbols that we've already seen

above are recognized here as well: bang , float , symbol , pointer , list

atoms are the remaining arguments of the message as a Lua table containing numbers, pointers and

strings, as required by the message

Here are some common examples:

function foo:in_1_float(x)

 pd.post(string.format("foo: got float %g", x))

end

function foo:in_1_symbol(x)

 pd.post(string.format("foo: got symbol %s", x))

end

function foo:in_1_list(x)

 pd.post(string.format("foo: got list %s", table.concat(x, " ")))

end

function foo:in_1_bar(x)

 pd.post(string.format("foo: got bar %s", table.concat(x, " ")))

end

function foo:in_n_baz(n, x)

 pd.post(string.format("foo: got baz %s on inlet #%d",

 table.concat(x, " "), n))

end

function foo:in_1(sel, atoms)

 pd.post(string.format("foo: got %s %s", sel, table.concat(atoms, " ")))

end

function foo:in_n(n, sel, atoms)

 pd.post(string.format("foo: got %s %s on inlet #%d", sel,

 table.concat(atoms, " "), n))

end

self:outlet(1, "bang", {})

self:outlet(1, "float", {math.pi})

self:outlet(1, "symbol", {"bar"})

self:outlet(1, "list", {1, 2, 3})

self:outlet(1, "fruit", {"apple", "orange", "kiwi"})

15 / 53

af://n142

Usually, self:outlet will be called in the inlet methods of an object, but you'll also see it in clocks and

receivers, which we'll discuss later.

Note that, by convention, most Pd objects handle inlets and outlets in a certain order, namely:

The leftmost inlet is the so-called hot inlet which triggers the actual computation and resulting output of
an object. Thus in Lua the calls to self:outlet should normally be put into the in_1 methods.

Consequently, outlets are normally triggered from right to left, so that, with a straight (non-crossing) wiring
of the patch cables, a connected object gets its hot inlet triggered last. In Lua this means that your
self:outlet calls should be ordered such that the outlet numbers are decreasing, not increasing with
each call.

You'll also see this guideline being used in the Fibonacci number example in the next section. Let us
emphasize again that this is merely a convention and thus you're not obliged to follow it, but most built-in and
external Pd objects do. Thus if your Lua object works differently for no good reason, then seasoned Pd users
will think that it is malfunctioning. There are some rare cases, however, where it's legitimate to deviate from
these rules. Consider, for instance, the built-in timer object whose right inlet is the "hot" one.

Fibonacci number example
Nobody in their right mind would actually bother to implement counters in Lua, since they're very easy to do
directly in Pd. So let's now take a look at a slightly more interesting example, the Fibonacci numbers. It is also
instructive to see how surprisingly difficult it is to write this as a Pd abstraction (you should actually give it a
try), whereas it is really dead-easy in Lua.

If you know some math or have studied the Golden ratio, then you've probably heard about these. Starting
from the pair 0, 1, the next number is always the sum of the two preceding ones: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,
55, 89, 144, etc. It goes without saying that these numbers grow pretty quickly (with the ratio of successive
numbers approaching the Golden ratio). Thus we may want to limit their range, which is also useful if we want
to use these numbers in a musical context, e.g., employing them as the basis of MIDI note numbers. One idea
which produces both mathematically and musically interesting results is to take the numbers modulo m, i.e.,
just retain their remainders when divided by the given modulus. As these sequences all have a finite range,
they must repeat eventually, but they have a surprisingly large period (also known as the Pisano period in
number theory) even for small values of m.

So, without any further ado, here is a Pd-Lua object which calculates the Fibonacci numbers for a given
modulus (10 by default, which, as Wikipedia will tell you, has a Pisano period of 60). We actually compute (and
output) the numbers in pairs, since we have to keep track of the pairs anyway in order to compute them
efficiently.

local fibs = pd.Class:new():register("fibs")

function fibs:initialize(sel, atoms)

 -- one inlet for bangs and other messages

 self.inlets = 1

 -- two outlets for the numbers in pairs

 self.outlets = 2

 -- intial pair

 self.a, self.b = 0, 1

 -- the modulus can also be set as creation argument

 self.m = type(atoms[1]) == "number" and atoms[1] or 10

 -- make sure that it's an integer > 0

 self.m = math.max(1, math.floor(self.m))

 -- print the modulus in the console, so that the user knows what it is

16 / 53

af://n161
https://en.wikipedia.org/wiki/Pisano_period

And here you can see the object running in a little test patch which outputs the two streams of Fibonacci notes
to two different MIDI channels. The two streams can be enabled and disabled individually with the
corresponding spigots, and you can also change the modulus on the fly.

 pd.post(string.format("fibs: modulus %d", self.m))

 return true

end

function fibs:in_1_bang()

 -- output the current pair in the conventional right-to-left order

 self:outlet(2, "float", {self.b})

 self:outlet(1, "float", {self.a})

 -- calculate the next pair; note that it's sufficient to calculate the

 -- remainder for the new number

 self.a, self.b = self.b, (self.a+self.b) % self.m

end

function fibs:in_1_float(m)

 -- a float input changes the modulus and resets the sequence

 self.m = math.max(1, math.floor(m))

 self.a, self.b = 0, 1

 pd.post(string.format("fibs: modulus %d", self.m))

end

function fibs:in_1_reset()

 -- a reset message just resets the sequence

 self.a, self.b = 0, 1

end

17 / 53

Using arrays and tables
Pd's arrays provide an efficient means to store possibly large vectors of float values. These are often used for
sample data (waveforms) of a given size (the number of samples), but can also be employed to store copious
amounts of numerical control data. Arrays are usually associated with a graphical display (called a graph), and
Pd's table object lets you create an array along with a graph as a special kind of subpatch.

Pd-Lua provides a Table class to represent array and table data, and a few functions to query and manipulate

that data. This comes in handy, e.g., if you want to fill an array with a computed waveform. While Pd has its
own corresponding facilities, complicated waveforms are often much easier to create in Lua, which offers a
fairly complete set of basic mathematical functions in its standard library, and a whole lot more through 3rd
party libraries such as Numeric Lua.

Here are the array/table functions provided by Pd-Lua. Note that like in Pd arrays, indices are zero-based and
thus range from 0 to tab:length()-1 .

pd.Table:new():sync(name) : creates the Lua representation of a Pd array and associates it with the Pd
array named name . The result is nil if an array or table of that name doesn't exist. You usually assign

that value to a local variable (named tab below) to refer to it later.

tab:length() : returns the length of tab (i.e., the number of samples in it)

tab:get(i) : gets the sample at index i from tab ; returns a number, or nil if the index runs past the

table boundaries

tab:set(i, x) : sets the sample at index i of tab to x (a number)

18 / 53

af://n168
https://github.com/carvalho/numlua

tab:redraw() : redraws the graph of tab ; you should call this once you're finished updating the table

One important point worth mentioning here is that arrays and tables are subject to change at any time in Pd,
as they may have their properties changed, be deleted, and recreated with new parameters. This means that
you will have to call pd.Table:new():sync(name) , assign it to a local variable, and check that value every time
you want to access the Pd array in a method.

Here is a simple example of a luatab object which takes the array name as a creation argument, and
generates a waveform of the given frequency whenever a float value is received on the single inlet. After
finishing generating the waveform, a bang message is output on the single outlet.

local luatab = pd.Class:new():register("luatab")

function luatab:initialize(sel, atoms)

 -- single inlet for the frequency, bang goes to the single outlet when we

 -- finished generating a new waveform

 self.inlets = 1

 self.outlets = 1

 -- the name of the array/table should be in the 1st creation argument

 if type(atoms[1]) == "string" then

 self.tabname = atoms[1]

 return true

 else

 self:error(string.format("luatab: expected array name, got %s",

 tostring(atoms[1])))

 return false

 end

end

function luatab:in_1_float(freq)

 if type(freq) == "number" then

 -- the waveform we want to compute, adjust this as needed

 local function f(x)

 return math.sin(2*math.pi*freq*(x+1))/(x+1)

 end

 -- get the Pd array and its length

 local t = pd.Table:new():sync(self.tabname)

 if t == nil then

 self:error(string.format("luatab: array or table %s not found",

 self.tabname))

 return

 end

 local l = t:length()

 -- Pd array indices are zero-based

 for i = 0, l-1 do

 -- normalize arguments to the 0-1 range

 t:set(i, f(i/l))

 end

 -- this is needed to update the graph display

 t:redraw()

 -- output a bang to indicate that we've generated a new waveform

 self:outlet(1, "bang", {})

 else

 self:error(string.format("luatab: expected frequency, got %s",

 tostring(freq)))

19 / 53

And here is a sample patch running the luatab object:

In the same vein, the Pd-Lua distribution includes a much more comprehensive example ltabfill.pd_lua, which
leverages Lua's load function to create a waveform from a user-specified Lua function created dynamically at
runtime (instead of being hard-coded into the Lua code, which is what we did above).

Using clocks
Clocks are used internally in Pd to implement objects which "do things" when a timeout occurs, such as delays,
pipes, and metronomes. Pd-Lua exposes this functionality so that objects written in Lua can do the same. The
following functions are provided:

pd.Clock:new():register(self, method) : This creates a new clock for the Pd-Lua object self which,

when it goes off, runs the method specified as a string method . Let's say that method is "trigger" , then
self:trigger() will be called without arguments when the clock times out. You usually want to assign

the result (a pd.Clock object) to a member variable of the object (called self.clock below), so that you

can refer to it later.

self.clock:delay(time) : sets the clock so that it will go off (and call the clock method) after time

milliseconds

 end

end

20 / 53

af://n189

self.clock:set(systime) : sets the clock so that it will go off at the specified absolute systime

(measured in Pd "ticks", whatever that means)

self.clock:unset() : unsets the clock, canceling any timeout that has been set previously

self.clock:destruct() : destroys the clock; this is to be called in the finalize method, so that the

clock doesn't go off (trying to invoke an invalid object) after an object was deleted

We mention in passing that you can call self.clock:delay(time) as soon as the clock has been created,

even in the initialize method of an object. Furthermore, you can have as many clocks as you want in the

same object, carrying out different actions, as long as you assign each clock to a different method.

Presumably, the self.clock:destruct() method should also be invoked automatically when setting
self.clock to nil , but the available documentation isn't terribly clear on this. So we recommend explicitly

calling self.clock:destruct() in self:finalize to be on the safe side, as the documentation advises us to

do, because otherwise "weird things will happen."

Also note that self.clock:set() isn't terribly useful right now, because it refers to Pd's internal "systime"

clock which isn't readily available in Pd-Lua.

With these caveats in mind, here is a little tictoc object we came up with for illustration purposes, along with

the usual test patch.

local tictoc = pd.Class:new():register("tictoc")

function tictoc:initialize(sel, atoms)

 -- inlet 1 takes an on/off flag, inlet 2 the delay time

 self.inlets = 2

 -- bangs are output alternating between the two outlets

 self.outlets = 2

 -- the delay time (optional creation argument, 1000 msec by default)

 self.delay = type(atoms[1]) == "number" and atoms[1] or 1000

 -- we start out on the left outlet

 self.left = true

 -- initialize the clock

 self.clock = pd.Clock:new():register(self, "tictoc")

 return true

end

-- don't forget this, or else...

function tictoc:finalize()

 self.clock:destruct()

end

-- As with the metro object, nonzero, "bang" and "start" start the clock,

-- zero and "stop" stop it.

function tictoc:in_1_float(state)

 if state ~= 0 then

 -- output the first tick immediately

 self:tictoc()

 else

 -- stop the clock

 self.clock:unset()

 end

21 / 53

end

function tictoc:in_1_bang()

 self:in_1_float(1)

end

function tictoc:in_1_start()

 self:in_1_float(1)

end

function tictoc:in_1_stop()

 self:in_1_float(0)

end

-- set the delay (always in msec, we don't convert units)

function tictoc:in_2_float(delay)

 -- this will be picked up the next time the clock reschedules itself

 self.delay = delay >= 1 and delay or 1

end

-- the clock method: tic, toc, tic, toc ...

function tictoc:tictoc()

 -- output a bang, alternate between left and right

 self:outlet(self.left and 1 or 2, "bang", {})

 self.left = not self.left

 -- reschedule

 self.clock:delay(self.delay)

end

22 / 53

More comprehensive examples using clocks can be found in the Pd-Lua distribution; have a look, e.g., at
ldelay.pd_lua and luametro.pd_lua. Also, lpipe.pd_lua demonstrates how to dynamically create an entire
collection of clocks in order to implement a delay line for a stream of messages.

Using receivers
As every seasoned Pd user knows, Pd also enables you to transmit messages in a wireless fashion, using
receiver symbols, or just receivers for short, as destination addresses. In Pd, this is done through the built-in
send and receive objects, as well as the "send" and "receive symbol" properties of GUI objects.

Sending messages to a receiver in Pd-Lua is straightforward:

pd.send(sym, sel, atoms) : Sends a message with the given selector symbol sel (a string) and
arguments atoms (a Lua table, which may be empty if the message has no arguments) to the given

receiver sym (a string).

This works pretty much like the outlet method, but outputs messages to the given receiver instead. For

instance, let's say you have a toggle with receiver symbol onoff in your patch, then you can turn on that

toggle with a call like pd.send("onoff", "float", {1}) . (Recall that the atoms argument always needs to be
a table, even if it is a singleton, lest you'll get that dreaded "no atoms??" error that we discussed earlier).

One complication are receiver symbols using a $0- patch id prefix, which are commonly used to differentiate
receiver symbols in different toplevel patches or abstractions, in order to prevent name clashes. A Pd-Lua
object doesn't have any idea of what toplevel patch it is located in, and what the numeric id of that patch is, so
you'll have to expand the $0- prefix on the Pd side and pass it, e.g., as a creation argument. For instance,

23 / 53

af://n209

suppose that the toggle receiver is in fact named $0-onoff , then something like the following Pd-Lua object

will do the trick, if you invoke it as luasend $0-onoff :

Of course, this also handles ordinary receive symbols just fine if you pass them as a creation argument. Here is
a little test patch showing luasend in action:

It is worth noting here that the same technique applies whenever you need to pass on "$" arguments to a Pd-
Lua object in a Pd abstraction.

So let's have a look at receivers now. These work pretty much like clocks in that you create them registering a
method, and destroy them when they are no longer needed:

pd.Receive:new():register(self, sym, method) : This creates a new receiver named sym (a string) for

the Pd-Lua object self which, when a message for that receiver becomes available, runs the method

specified as a string method . Let's say that method is "receive" , then self:receive(sel, atoms) will
be invoked with the selector symbol sel and arguments atoms of the transmitted message. You want to

assign the result (a pd.Receive object) to a member variable of the object (called self.recv below), so

that you can refer to it later (if only to destroy it, see below).

self.recv:destruct() : destroys the receiver

Note that the same caveat applies to receivers as in the case of clocks. That is, you should use the destruct

method to destroy receivers in the finalize routine of the receiving object, so that they don't hang around

when their object is long dead. Otherwise, you guessed it, "weird things will happen."

local luasend = pd.Class:new():register("luasend")

function luasend:initialize(sel, atoms)

 self.inlets = 1

 self.receiver = tostring(atoms[1])

 return true

end

function luasend:in_1_bang()

 pd.send(self.receiver, "float", {1})

end

24 / 53

Here is a little example which receives any kind of message, stores it, and outputs the last stored message
when it gets a bang on its inlet.

The obligatory test patch:

local luarecv = pd.Class:new():register("luarecv")

function luarecv:initialize(sel, atoms)

 self.inlets = 1

 self.outlets = 1

 -- pass the receiver symbol as creation argument

 local sym = tostring(atoms[1])

 pd.post(string.format("luarecv: receiver '%s'", sym))

 -- create the receiver

 self.recv = pd.Receive:new():register(self, sym, "receive")

 return true

end

function luarecv:finalize()

 self.recv:destruct()

end

function luarecv:receive(sel, atoms)

 -- simply store the message, so that we can output it later

 self.sel, self.atoms = sel, atoms

 pd.post(string.format("luarecv: got '%s %s'", sel,

 table.concat(atoms, " ")))

end

function luarecv:in_1_bang()

 -- output the last message we received (if any)

 if self.sel then

 self:outlet(1, self.sel, self.atoms)

 end

end

25 / 53

Signals and graphics
So far all of our examples only did control processing, which is what Pd-Lua was originally designed for. But
thanks to the work of Timothy Schoen (the creator and main developer of plugdata), as of version 0.12.0 Pd-
Lua also provides facilities for audio signal processing and graphics. It goes without saying that these
capabilities vastly extend the scope of Pd-Lua applications, as you can now program pretty much any kind of
Pd object in Lua, covering both signal and control processing, as well as custom GUI objects. We'll first discuss
how to write a signal processing (a.k.a. dsp) object in Pd-Lua, and then go on to show the implementation of a
simple GUI object using the graphics API.

NOTE: As these features are still fairly new, some details of the implementation may still be subject to change
in future Pd-Lua versions. Also, we can't cover all the details here, so we recommend having a look at the
examples included in the Pd-Lua distribution. You can find these under pdlua/examples in the source or in the
help browser. Specifically, check the sig-example folder for another example illustrating the use of signal inlets
and outlets, and Benjamin Wesch's osci3d~ which shows how to implement a 3d oscilloscope employing both
signal processing and graphics.

Signals

Enabling signal processing in a Pd-Lua object involves three ingredients:

1. Adding signal inlets and outlets: As before, this is done by setting the inlets and outlets member

variables in the initialize method. But instead of setting each variable to just a number, you specify a

signature, which is a table indicating the signal and control in- and outlets with the special SIGNAL and

DATA values. The number of in- and outlets is then given by the size of these tables. Thus, e.g., you'd use
self.inlets = { SIGNAL, SIGNAL, DATA } if you need two signal and one control data inlet, in that

order. Note that a number as the value of inlets or outlets corresponds to a signature with just DATA

values in it.

26 / 53

af://n232
https://plugdata.org/
https://github.com/ben-wes/scope3d-
af://n237

2. Adding a dsp method: This step is optional. The dsp method gets invoked whenever signal processing is

turned on in Pd, passing two parameters: samplerate and blocksize . The former tells you about the
sample rate (number of audio samples per second) Pd runs at, which will be useful if your object needs to
translate time and frequency values from physical units (i.e., seconds, milliseconds, and Hz) to sample-
based time and frequency values, so usually you want to store the given value in a member variable of
your object. The latter specifies the block size, i.e., the number of samples Pd expects to be processed
during each call of the perform method (see below). You only need to store that number if your object
doesn't have any signal inlets, so that you know how many samples need to be generated. Otherwise the
block size can also be inferred from the size of the in tables passed to the perform method. Adding the

dsp method is optional. You only have to define it if the signal and control data processing in your object

requires the samplerate and blocksize values, or if you need to be notified when dsp processing gets
turned on for some other reason.

3. Adding a perform method: This method is where the actual signal processing happens. It receives
blocks of signal data from the inlets through its arguments, where each block is represented as a Lua
table containing floating point sample values. The method then needs to return a tuple of similar Lua
tables with the blocks of signal data for each outlet. Note that the number of arguments of the method
matches the number of signal inlets, while the number of return values corresponds to the number of
signal outlets. The perform method is not optional; if your object outputs any signal data, the method
needs to be implemented, otherwise you'll get a 'perform' function should return a table or

similar error in the Pd console as soon as you turn on dsp processing.

In addition to the dsp and perform methods, your object may contain any number of methods doing the

usual control data processing on the DATA inlets. It is also possible to receive control data on the SIGNAL

inlets; however, you won't be able to receive float messages, because they will be interpreted as constant
signals which get passed as blocks of signal data to the perform method instead.

Example 1: Mixing signals

Let's take a look at a few simple examples illustrating the kind of processing the perform method might do.

First, let's mix two signals (stereo input) down to a single (mono) output by computing the average of
corresponding samples. We need two signal inlets and one signal outlet, so our initialize method looks like

this:

And here's the perform method (in this simple example we don't need foo:dsp()):

local foo = pd.Class:new():register("foo")

function foo:initialize(sel, atoms)

 self.inlets = {SIGNAL,SIGNAL}

 self.outlets = {SIGNAL}

 return true

end

function foo:perform(in1, in2)

 for i = 1, #in1 do

 in1[i] = (in1[i]+in2[i])/2

 end

 return in1

end

27 / 53

af://n247

Note that here we replaced the signal data in the in1 table with the result, so we simply return the modified

in1 signal; no need to create a third out table. (This is safe because it won't actually modify any signal data
outside the Lua method.)

Easy enough. And this is how this object works in a little test patch:

Example 2: Analyzing a signal

A dsp object can also have no signal outlets at all if you just want to process the incoming signal data in some
way and output the result through a normal control outlet. E.g., here's one (rather simplistic) way to compute
the rms (root mean square) envelope of a signal as control data:

A little test patch:

function foo:initialize(sel, atoms)

 self.inlets = {SIGNAL}

 self.outlets = {DATA}

 return true

end

function foo:perform(in1)

 local rms = 0

 for i = 1, #in1 do

 rms = rms + in1[i]*in1[i]

 end

 rms = math.sqrt(rms/#in1)

 self:outlet(1, "float", {rms})

end

28 / 53

af://n255
https://en.wikipedia.org/wiki/Root_mean_square

Example 3: Generating a signal

Conversely, we can also have an object which converts control inputs into signal data, such as this little
oscillator object which produces a sine wave:

function foo:initialize(sel, atoms)

 self.inlets = {DATA}

 self.outlets = {SIGNAL}

 self.phase = 0

 self.freq = 220

 self.amp = 0.5

 return true

end

-- message to set frequency...

function foo:in_1_freq(atoms)

 self.freq = atoms[1]

end

-- ... and amplitude.

function foo:in_1_amp(atoms)

 self.amp = atoms[1]

end

function foo:perform()

 local freq = self.freq -- frequency of the sine wave in Hz

 local amp = self.amp -- amplitude of the sine wave (0 to 1)

29 / 53

af://n260

The obligatory test patch:

Real-world example: Cross-fades

Let's finally take a look at a somewhat more realistic and useful example which performs cross-fades on two
incoming signals by doing linear interpolation between the input signals. A customary design for this kind of
dsp object is to have a target cross-fade value (xfade argument) ranging from 0 (all left signal) to 1 (all right
signal). We also want to be able to smoothly ramp from one cross-fade value to the next in order to avoid
clicks (time argument), and have an initial delay until moving to the new xfade value (delay argument). Here

is the definition of a luaxfade~ object which does all this, including the checking of all argument values, so

that we don't run into any Lua exceptions because of bad values. The example also illustrates how to receive
control messages on a signal inlet (cf. the fade message on the left signal inlet). You can find this as

luaxfade.pd_lua in the tutorial examples.

 -- calculate the angular frequency (in radians per sample)

 local angular_freq = 2 * math.pi * freq / self.samplerate

 local out = {} -- result table

 for i = 1, self.blocksize do

 out[i] = amp * math.sin(self.phase)

 self.phase = self.phase + angular_freq

 if self.phase >= 2 * math.pi then

 self.phase = self.phase - 2 * math.pi

 end

 end

 return out

end

30 / 53

af://n265

local luaxfade = pd.Class:new():register("luaxfade~")

function luaxfade:initialize(sel, atoms)

 self.inlets = {SIGNAL,SIGNAL}

 self.outlets = {SIGNAL}

 self.xfade = 0

 self.xfade_to = 0

 self.xfade_time = 0

 self.xfade_delay = 0

 self.time = 0

 self.ramp = 0

 return true

end

function luaxfade:dsp(samplerate, blocksize)

 self.samplerate = samplerate

end

function luaxfade:in_1_fade(atoms)

 -- If self.samplerate is not initialized, because the dsp method has not

 -- been run yet, then we cannot compute the sample delay and ramp times

 -- below, so we bail out, telling the user to enable dsp first.

 if not self.samplerate then

 self:error("luaxfade~: unknown sample rate, please enable dsp first")

 return

 end

 local fade, time, delay = table.unpack(atoms)

 if type(delay) == "number" then

 -- delay time (msec -> samples)

 self.xfade_delay = math.floor(self.samplerate*delay/1000)

 end

 if type(time) == "number" then

 -- xfade time (msec -> samples)

 self.xfade_time = math.floor(self.samplerate*time/1000)

 end

 if type(fade) == "number" then

 -- new xfade value (clamp to 0-1)

 self.xfade_to = math.max(0, math.min(1, fade))

 end

 if self.xfade_to ~= self.xfade then

 -- start a new cycle

 if self.xfade_delay > 0 then

 self.time, self.ramp = self.xfade_delay, 0

 elseif self.xfade_time > 0 then

 self.time, self.ramp = self.xfade_time,

 (self.xfade_to-self.xfade)/self.xfade_time

 else

 self.xfade = self.xfade_to

 self.time, self.ramp = 0, 0

 end

 end

end

function luaxfade:perform(in1, in2)

 local xfade, xfade_to = self.xfade, self.xfade_to

31 / 53

And here's the luaxfade.pd patch which takes a sine wave on the left and a noise signal on the right inlet and
performs cross fades with a ramp time of 500 msec and an initial delay of 200 msec. To adjust these values,
just edit the fade message accordingly.

 local xfade_time = self.xfade_time

 local time, ramp = self.time, self.ramp

 -- loop through each sample index

 for i = 1, #in1 do

 -- mix (we do this in-place, using in1 for output)

 in1[i] = in1[i]*(1-xfade) + in2[i]*xfade

 -- update the mix if time > 0 (sample countdown)

 if time > 0 then

 -- update cycle is still in ptogress

 if ramp ~= 0 then

 xfade = xfade + ramp

 end

 time = time - 1

 elseif xfade_to ~= xfade then

 if xfade_time > 0 then

 -- start the ramp up or down

 time, ramp = xfade_time, (xfade_to-xfade)/xfade_time

 else

 -- no xfade_time, jump to the new value immediately

 xfade = xfade_to

 end

 end

 end

 -- update internal state

 self.xfade, self.time, self.ramp = xfade, time, ramp

 -- return the mixed down sample data

 return in1

end

32 / 53

Graphics

Timothy Schoen's Pd-Lua graphics API provides you with a way to equip an object with a static or animated
graphical display inside its object box on the Pd canvas. Typical examples would be various kinds of wave
displays, or custom GUI objects consisting of text and simple geometric shapes. To these ends, you can adjust
the size of the object box to any width and height you specify. Inside the box rectangle you can then draw text
and basic geometric shapes such as lines, rectangles, circles, and arbitrary paths, through stroke and fill
operations using any rgb color.

In order to enable graphics in a Pd-Lua object, you have to provide a paint method. This receives a graphics

context g as its argument, which lets you set the current color, and draw text and the various different
geometric shapes using that color. In addition, you can provide methods to be called in response to mouse
down, up, move, and drag actions on the object, which is useful to equip your custom GUI objects with mouse-
based interaction.

Last but not least, the set_args method lets you store internal object state in the object's creation

arguments, which is useful if you need to keep track of persistent state when storing an object on disk (via
saving the patch) or when duplicating or copying objects. This can also be used with ordinary Pd-Lua objects
which don't utilize the graphics API, but it is most useful in the context of custom GUI objects.

We use a custom GUI object, a simple kind of dial, as a running example to illustrate most of these elements in
the following subsections. To keep things simple, we will not discuss the graphics API in much detail here, so
you may want to check the graphics subpatch in the main pdlua-help patch, which contains a detailed listing of
all available methods for reference.

33 / 53

af://n270

Getting started: A basic dial object

Let's begin with a basic clock-like dial: just a circular face and a border around it, on which we draw a center
point and the hand (a line) starting at the center point and pointing in any direction which indicates the current
phase angle. So this is what we are aiming for:

Following the clock paradigm, we assume that a zero phase angle means pointing upwards (towards the 12
o'clock position), while +1 or -1 indicates the 6 o'clock position, pointing downwards. Phase angles less than -1
or greater than +1 wrap around. Positive phase differences denote clockwise, negative differences counter-
clockwise rotation. And since we'd like to change the phase angle displayed on the dial, we add an inlet taking
float values.

Here's the code implementing the object initialization and the float inlet:

local dial = pd.Class:new():register("dial")

function dial:initialize(sel, atoms)

 self.inlets = 1

 self.outlets = 0

 self.phase = 0

 self:set_size(127, 127)

 return true

end

function dial:in_1_float(x)

 self.phase = x

 self:repaint()

end

34 / 53

af://n275

The self:set_size() call in the initialize method sets the pixel size of the object rectangle on the canvas

(in this case it's a square with a width and height of 127 pixels). Also note the call to self:repaint() in the
float handler for the inlet, which will redraw the graphical representation after updating the phase value.

We still have to add the dial:paint() method to do all the actual drawing:

The existence of the paint method tells Pd-Lua that this is a graphical object. As mentioned before, this

method receives a graphics context g as argument. The graphics context is an internal data structure keeping

track of the graphics state of the object, which is used to invoke all the graphics operations. The set_color
method of the graphics context is used to set the color for all drawing operations; in the case of fill

operations it fills the graphical element with the color, while in the case of stroke operations it draws its

border. There's just one color value, so we need to set the desired fill color in case of fill , and the desired

stroke color in case of stroke operations. The color values 0 and 1 we use in this example are predefined,
and indicate the default background color (usually white) and default foreground color (usually black),
respectively.

It is possible to choose other colors by calling g:set_color(r, g, b) with rgb color values instead, with each

r, g, b value ranging from 0 to 255 (i.e., a byte value). For instance, the color "teal" would be specified as 0, 128,
128, the color "orange" as 255, 165, 0, "black" as 0, 0, 0, "white" as 255, 255, 255, etc. It's also possible to add a
fourth alpha a.k.a. opacity value a, which is a floating point number in the range 0-1, where 0 means fully
transparent, 1 fully opaque, and any value in between will blend in whatever is behind the graphical element
to varying degrees. As of Pd-Lua 0.12.7, alpha values are fully supported in both plugdata and purr-data. In
vanilla Pd they are simply ignored at present, so all graphical objects will be opaque no matter what alpha
value you specify.

Let's now take a closer look at the drawing operations themselves. We start out by filling the entire object
rectangle, which is our drawing surface, with the default background color 0, using g:fill_all() . This

operation is special in that it not only fills the entire object rectangle, but also creates a standard border
rectangle around it. If you skip this, you'll get an object without border, which may be useful at times.

We then go on to fill a circle with the background color, the dial's face. The graphics API has no operation to
draw a circle, so we just draw an ellipse instead. The coordinates given to g:fill_ellipse() are the

coordinates of the rectangle surrounding the ellipse. In this case the width and height values are what we
specified with self:set_size(127, 127) in the initialize method, so they are identical, and thus our

function dial:paint(g)

 local width, height = self:get_size()

 local x, y = self:tip()

 -- standard object border, fill with bg color

 g:set_color(0)

 g:fill_all()

 -- dial face

 g:fill_ellipse(2, 2, width - 4, height - 4)

 g:set_color(1)

 -- dial border

 g:stroke_ellipse(2, 2, width - 4, height - 4, 4)

 -- center point

 g:fill_ellipse(width/2 - 3.5, height/2 - 3.5, 7, 7)

 -- dial hand

 g:draw_line(x, y, width/2, height/2, 2)

end

35 / 53

ellipse is in fact a circle. Also note that we make the ellipse a little smaller and put it at a small offset from the
upper left corner, so the actual width and height are reduced by 4 and the shape is centered in the object
rectangle (or square, in this case).

Note that we could have skipped drawing the face entirely at this point, since it just draws a white circle on
white background. But we could make the face a different color later, so it's good to include it anyway.

After the face we draw its border, drawing the same ellipse again, but this time in the default foreground color
and with a stroke width of 4. We then go on to draw the remaining parts, a small disk in the center which
mimics the shaft on which the single hand of the dial is mounted, and the hand itself, which is just a simple
line pointing in a certain direction.

Which direction? I'm glad you asked. The line representing the hand goes from the center point width/2,
height/2 to the point given by the x, y coordinates. Both width, height and x, y are calculated and assigned to
local variables at the beginning of the paint method:

The get_size() call employs a built-in method which returns the current dimensions of the object rectangle;

this is part of the graphics API. We could have used the constant 127 from the initialize method there, but

we could change the size of the object rectangle later, so it's better not to hard-code the size in the paint
method.

The tip() method we have to define ourselves. It is supposed to calculate the coordinates of the tip of the

hand. I have factored this out into its own routine right away, so that we can reuse it later when we add the
mouse actions. Here it is:

This basically just converts the position of the tip from polar coordinates (1, phase) to rectangular coordinates
(x, y) and then translates and scales the normalized coordinates to pixel coordinates in the object rectangle
which has its center at (width/2, height/2). We also put the tip at a normalized radius of 0.8 so that it is well
within the face of the dial. Moreover, the formula computing the x, y pair accounts for the fact that the y
coordinates of the object rectangle are upside-down (0 is at the top), and that we want the center-up (a.k.a. 12
o'clock) position to correspond to a zero phase angle. Hence the sin and cos terms have been swapped and
the cos term adorned with a minus sign compared to the standard polar - rectangular conversion formula.

So now that we hopefully understand all the bits and pieces, here's the Lua code of the object in its entirety
again:

 local width, height = self:get_size()

 local x, y = self:tip()

function dial:tip()

 local width, height = self:get_size()

 local x, y = math.sin(self.phase*math.pi), -math.cos(self.phase*math.pi)

 x, y = (x/2*0.8+0.5)*width, (y/2*0.8+0.5)*height

 return x, y

end

local dial = pd.Class:new():register("dial")

function dial:initialize(sel, atoms)

 self.inlets = 1

 self.outlets = 0

 self.phase = 0

 self:set_size(127, 127)

36 / 53

Adding an outlet

We can already send phase values into our dial object, but there's no way to get them out again. So let's add
an outlet which lets us do that. Now that the grunt work is already done, this is rather straightforward. First we
need to add the outlet in the initialize method:

And then we just add a message handler for bang which outputs the value on the outlet:

Easy as pie. Here's how our patch looks like now:

 return true

end

function dial:in_1_float(x)

 self.phase = x

 self:repaint()

end

-- calculate the x, y position of the tip of the hand

function dial:tip()

 local width, height = self:get_size()

 local x, y = math.sin(self.phase*math.pi), -math.cos(self.phase*math.pi)

 x, y = (x/2*0.8+0.5)*width, (y/2*0.8+0.5)*height

 return x, y

end

function dial:paint(g)

 local width, height = self:get_size()

 local x, y = self:tip()

 -- standard object border, fill with bg color

 g:set_color(0)

 g:fill_all()

 -- dial face

 g:fill_ellipse(2, 2, width - 4, height - 4)

 g:set_color(1)

 -- dial border

 g:stroke_ellipse(2, 2, width - 4, height - 4, 4)

 -- center point

 g:fill_ellipse(width/2 - 3.5, height/2 - 3.5, 7, 7)

 -- dial hand

 g:draw_line(x, y, width/2, height/2, 2)

end

 self.outlets = 1

function dial:in_1_bang()

 self:outlet(1, "float", {self.phase})

end

37 / 53

af://n298

Mouse actions

Our dial now has all the basic ingredients, but it still lacks one important piece: Interacting with the graphical
representation itself using the mouse. The graphics API makes this reasonably easy since it provides us with
four callback methods that we can implement. Each of these gets invoked with the current mouse coordinates
relative to the object rectangle:

mouse_down(x, y) : called when the mouse is clicked

mouse_up(x, y) : called when the mouse button is released

mouse_move(x, y) : called when the mouse changes position while the mouse button is not pressed

mouse_drag(x, y) : called when the mouse changes position while the mouse button is pressed

Here we only need the mouse_down and mouse_drag methods which let us keep track of mouse drags in the

object rectangle in order to update the phase value and recalculate the tip of the hand (I told you that the
tip() method would come in handy again!). Here's the Lua code. Note that the mouse_down callback is used
to initialize the tip_x and tip_y member variables, which we keep track of during the drag operation, so

that we can detect in mouse_drag when it's time to output the phase value and repaint the object:

function dial:mouse_down(x, y)

 self.tip_x, self.tip_y = self:tip()

end

function dial:mouse_drag(x, y)

 local width, height = self:get_size()

 local x1, y1 = x/width-0.5, y/height-0.5

38 / 53

af://n305

And here's the same patch again, which now lets us drag the hand to change the phase value:

More dial action: clocks and speedometers

Now that our dial object is basically finished, let's do something interesting with it. The most obvious thing is to
just turn it into a clock (albeit one with just a seconds hand) counting off the seconds. For that we just need to
add a metro object which increments the phase angle and sends the value to the dial each second:

 -- calculate the normalized phase, shifted by 0.5, since we want zero to be

 -- the center up position

 local phase = math.atan(y1, x1)/math.pi + 0.5

 -- renormalize if we get an angle > 1, to account for the phase shift

 if phase > 1 then

 phase = phase - 2

 end

 self.phase = phase

 local tip_x, tip_y = self:tip();

 if tip_x ~= self.tip_x or tip_y ~= self.tip_y then

 self.tip_x = tip_x

 self.tip_y = tip_y

 self:in_1_bang()

 self:repaint()

 end

end

39 / 53

af://n320

Pd lets us store the phase angle in a named variable (v phase) which can be recalled in an expr object doing

the necessary calculations. The expr object sends the computed value to the phase receiver, which updates

both the variable and the upper numbox, and the numbox then updates the dial. Note that we also set the
variable whenever the dial outputs a new value, so you can also drag around the hand to determine the
starting phase. And we added a 0 message to reset the hand to the 12 o'clock home position when needed.

Here's another little example, rather useless but fun, simulating a speedometer which just randomly moves
the needle left and right:

40 / 53

I'm sure you can imagine many more creative uses for this simple but surprisingly versatile little GUI object,
which we did in just a few lines of fairly simple Lua code. Have fun with it! An extended version of this object,
which covers some more features of the graphics API that we didn't discuss here to keep things simple, can be
found as dial.pd and dial.pd_lua in the tutorial examples:

41 / 53

The extended example adds messages for resizing the object and setting colors, and also shows how to save
and restore object state in the creation arguments using the set_args() method mentioned at the beginning

of this section. The accompanying patch covers all the examples we discussed here, and adds a third example
showing how to utilize our dial object as a dB meter.

Live coding
I've been telling you all along that in order to make Pd-Lua pick up changes you made to your .pd_lua files, you
have to relaunch Pd and reload your patches. Well, this isn't actually true, but I've kept this topic for the final
section of this guide, because it is somewhat advanced, and there are several different methods available
which differ in capabilities and ease of use.

So in this section we are going to cover Pd-Lua's live coding features, which let you modify your sources and
have Pd-Lua reload them on the fly, without ever exiting the Pd environment. This rapid incremental style of
development is one of the hallmark features of dynamic interactive programming environments like Pd and
Lua. Musicians also like to employ it to modify their programs live on stage, which is where the term "live
coding" comes from.

First, we need to describe the predefined Pd-Lua object classes pdlua and pdluax , so that you know the

"traditional" live-coding instruments that Pd-Lua had on offer for a long time. We also discuss how to add a
reload message to your existing object definitions. This is quite easy to do by directly employing Pd-Lua's

dofile method, which is also what both pdlua and pdluax use internally. These methods all work with

pretty much any Pd-Lua version out there, but may require some fiddling which can be both time-consuming
and error-prone.

That's why Pd-Lua nowadays includes an extension module called pdx.lua which works in a similar fashion, but
automatizes the entire process, and is therefore much easier to use. This is also the method we recommend
for all modern Pd-Lua versions. We describe it last so that you can also gather a good understanding of Pd-
Lua's traditional live coding methods, which are still included in Pd-Lua for backward compatibility, and are still
being used in some scripts. But if you want something that just works with minimal effort in modern Pd-Lua
then feel free to skip ahead to the pdx.lua section now.

pdlua

The pdlua object accepts a single kind of message of the form load filename on its single inlet, which
causes the given Lua file to be loaded and executed. Since pdlua has no outlets, its uses are rather limited.

However, it does enable you to load global Lua definitions and execute an arbitrary number of statements,
e.g., to post some text to the console or transmit messages to Pd receivers using the corresponding Pd-Lua
functions. For instance, here's a little Lua script loadtest.lua which simply increments a global counter
variable (first initializing it to zero if the variable doesn't exist yet) and posts its current value in the console:

To run this Lua code in Pd, you just need to connect the message load loadtest.lua to pdlua 's inlet (note
that you really need to specify the full filename here, there's no default suffix):

counter = counter and counter + 1 or 0

pd.post(string.format("loadtest: counter = %d", counter))

42 / 53

af://n329
af://n334

Now, each time you click on the load loadtest.lua message, the file is reloaded and executed, resulting in

some output in the console, e.g.:

Also, you can edit the script between invocations and the new code will be loaded and used immediately. E.g.,
if you change counter + 1 to counter - 1 , you'll get:

That's about all there is to say about pdlua ; it's a very simple object.

pdluax

pdluax is a bit more elaborate and allows you to create real Pd-Lua objects with an arbitrary number of inlets,

outlets, and methods. To these ends, it takes a single creation argument, the basename of a .pd_luax file. This
file is a Lua script returning a function to be executed in pdluax 's own initialize method, which contains

all the usual definitions, including the object's method definitions, in its body. This function receives the
object's self as well as all the extra arguments pdluax was invoked with, and should return true if creation
of the object succeeded.

For instance, here's a simplified version of our foo counter object, rewritten as a .pd_luax file, to be named

foo.pd_luax:

loadtest: counter = 0

loadtest: counter = 1

loadtest: counter = 0

loadtest: counter = -1

43 / 53

af://n344

Note the colon syntax self:in_1_bang() . This adds the bang method directly to the self object rather than

its class, which is pdluax . (We obviously don't want to modify the class itself, which may be used to create any
number of different kinds of objects, each with their own collection of methods.) Also note that the outer
function is "anonymous" (nameless) here; you can name it, but there's usually no need to do that, because this
function will be executed just once, when the corresponding pdluax object is created. Another interesting

point to mention here is that this approach of including all the object's method definitions in its initialization
method works with regular .pd_lua objects, too; try it!

In the patch, we invoke a .pd_luax object by specifying the basename of its script file as pdluax 's first
argument, adding any additional creation arguments that the object itself might need:

These pdluax foo objects work just the same as their regular foo counterparts, but there's an important

difference: The code in foo.pd_luax is loaded every time you create a new pdluax foo object. Thus you can

easily modify that file and just add a new pdluax foo object to have it run the latest version of your code. For
instance, in foo.pd_luax take the line that reads:

Now change that + operator to - :

return function (self, sel, atoms)

 self.inlets = 1

 self.outlets = 1

 self.counter = type(atoms[1]) == "number" and atoms[1] or 0

 self.step = type(atoms[2]) == "number" and atoms[2] or 1

 function self:in_1_bang()

 self:outlet(1, "float", {self.counter})

 self.counter = self.counter + self.step

 end

 return true

end

 self.counter = self.counter + self.step

44 / 53

Don't forget to save your edits, then go back to the patch and recreate the pdluax foo object on the left. The
quickest way to do that is to just delete the object, then use Pd's "Undo" operation, Ctrl+Z. Et voilà: the new
object now decrements the counter rather than incrementing it. Also note that the other object on the right
still runs the old code which increments the counter; thus you will have to give that object the same treatment
if you want to update it, too.

While pdluax was considered Pd-Lua's main workhorse for live coding in the past, it has its quirks. Most

notably, the syntax is different from regular object definitions, so you have to change the code if you want to
turn it into a .pd_lua file. Also, having to recreate an object to reload the script file is quite disruptive (it resets
the internal state of the object), and may leave objects in an inconsistent state (different objects may use
various different versions of the same script file). Sometimes this may be what you want, but it makes pdluax

somewhat difficult to use. It's not really tailored for interactive development, but it shines if you need a
specialized tool for changing your objects on a whim in a live situation.

Fortunately, if you're not content with Pd-Lua's traditional facilities for live coding, it's easy to roll your own
using the internal dofile method, which is discussed in the next subsection.

dofile and dofilex

So let's discuss how to use dofile in a direct fashion. Actually, we're going to use its companion dofilex

here, which works the same as dofile , but loads Lua code relative to the "externdir" of the class (the

directory of the .pd_lua file) rather than the directory of the Pd canvas with the pdlua object, which is what
dofile does. Normally, this won't make much of a difference, but it will matter if Lua class names are

specified using relative pathnames, such as ../foo or bar/baz . Since we're reloading class definitions here,

it's better to use dofilex so that our objects don't break if we move things about.

The method we sketch out below is really simple and doesn't have any of the drawbacks of the pdluax object,

but you still have to add a small amount of boilerplate code to your existing object definition. Here is how
dofilex is invoked:

self:dofilex(scriptname) : This loads the given Lua script, like Lua's loadfile , but also performs a
search on Pd's path to locate the file, and finally executes the file if it was loaded successfully. Note that
self must be a valid Pd-Lua object, which is used solely to determine the externdir of the object's class,

so that the script will be found if it is located there.

The return values of dofilex are those of the Lua script, along with the path under which the script was

found. If the script itself returns no value, then only the path will be returned. (We don't use any of this
information in what follows, but it may be useful in more elaborate schemes. For instance, pdluax uses the
returned function to initialize the object, and the path in setting up the object's actual script name.)

Of course, dofilex needs the name of the script file to be loaded. We could hardcode this as a string literal,

but it's easier to just ask the object itself for this information. Each Pd-Lua object has a number of private
member variables, among them _name (which is the name under which the object class was registered) and

_scriptname (which is the name of the corresponding script file, usually this is just _name with the .pd_lua
extension tacked onto it). The latter is what we need. Pd-Lua also offers a whoami() method for this purpose,

but that method just returns _scriptname if it is set, or _name otherwise. Regular Pd-Lua objects always have

_scriptname set, so it will do for our purposes.

 self.counter = self.counter - self.step

45 / 53

af://n358

Finally, we need to decide how to invoke dofilex in our object. The easiest way to do this is to just add a

message handler (i.e., an inlet method) to the object. For instance, say that the object is named foo which is
defined in the foo.pd_lua script. Then all you have to do is add something like the following definition to the
script:

As we already discussed, this code uses the object's internal _scriptname variable, and so is completely

generic. You can just copy this over to any .pd_lua file, if you replace the foo prefix with whatever the name of

your actual class variable is. With that definition added, you can now just send the object a reload message
whenever you want to have its script file reloaded.

NOTE: This works because the pd.Class:new():register("foo") call of the object only registers a new class

if that object class doesn't exist yet; otherwise it just returns the existing class.

By reloading the script file, all of the object's method definitions will be overwritten, not only for the object
receiving the reload message, but for all objects of the same class, so it's sufficient to send the message to

any (rather than every) object of the class. Also, existing object state (as embodied by the internal member
variables of each object) will be preserved.

In general all this works pretty well, but there are some caveats, too. Note that if you delete one of the object's
methods, or change its name, the old method will still hang around in the runtime class definition until you
relaunch Pd. That's because reloading the script does not erase any old method definitions, it merely replaces
existing and adds new ones.

Finally, keep in mind that reloading the script file does not re-execute the initialize method. This method is

only invoked when an object is instantiated. Thus, in particular, reloading the file won't change the number of
inlets and outlets of an existing object. Newly created objects will pick up the changes in initialize , though,
and have the proper number of inlets and outlets if those member variables were changed.

Let's give this a try, using luatab.pd_lua from the "Using arrays and tables" section as an example. In fact, that's
a perfect showcase for live coding, since we want to be able to change the definition of the waveform function
f in luatab:in_1_float on the fly. Just add the following code to the end of luatab.pd_lua:

Now launch the luatab.pd patch and connect a reload message to the luatab wave object, like so:

function foo:in_1_reload()

 self:dofilex(self._scriptname)

end

function luatab:in_1_reload()

 self:dofilex(self._scriptname)

end

46 / 53

Next change the wavetable function to whatever you want, e.g.:

Return to the patch, click the reload message, and finally reenter the frequency value, so that the waveform

gets updated:

 local function f(x)

 return math.sin(2*math.pi*freq*x)+1/3*math.sin(2*math.pi*3*freq*x)

 end

47 / 53

pdx.lua

The method sketched out in the preceding subsection works well enough for simple patches. However, having
to manually wire up the reload message to one object of each class that you're editing is still quite
cumbersome. In a big patch, which is being changed all the time, this quickly becomes unwieldy. Wouldn't it be
nice if we could equip each object with a special receiver, so that we can just click a message somewhere in the
patch to reload a given class, or even all Pd-Lua objects at once? Or even send that message via the pdsend

program, e.g., from the text editor in which you edit the Lua source of your object?

Well, all this is in fact possible, but the implementation is a bit too involved to fully present here. So we have
provided this in a separate pdx.lua module, which you can find in the sources accompanying this tutorial for
your perusal. As of Pd-Lua 0.12.8, pdx.lua is pre-loaded and all the required setup is performed automatically.
You only have to add a message like the following to your patch, which goes to the special pdluax receiver

(note that this is unrelated to the pdluax object discussed previously, it just incidentally uses the same name):

When clicked, this just reloads all Pd-Lua objects in the patch. You can also specify the class to be reloaded (the
receiver matches this against each object's class name):

Or maybe name several classes, like so:

; pdluax reload

; pdluax reload foo

48 / 53

af://n383

You get the idea. Getting set up for remote control via pdsend isn't much harder. E.g., let's say that we use
UDP port 4711 on localhost for communicating with Pd, then you just need to connect netreceive 4711 1 to

the pdluax receiver in a suitable way. Let's use the luatab.pd_lua object from the previous subsection as an

example. You can remove the in_1_reload handler from that script -- it's no longer needed, as pdx.lua now

dispatches the reload messages for us. Here's how the revised patch looks like:

This doesn't look any simpler than before, but it also does a whole lot more. Clicking the message not just
reloads the luatab script, but any Lua object you have running, in any of the patches you have opened. And

you can now use pdsend 4711 localhost udp to reload your Lua objects from literally anywhere. You
probably don't want to run those commands yourself, but a decent code editor will let you bind a keyboard
command which does this for you. Myself, I'm a die-hard Emacs fan, so I've included a little elisp module pd-
remote.el which shows how to do this. Once you've added this to your .emacs, you can just type Ctrl+C Ctrl+K
in any Lua buffer to make Pd reload your Lua scripts after editing them. It doesn't get much easier than that.

Admittedly, adding the netreceive and messaging bits to your patches is still a little tedious, so I've provided

a little abstraction named pd-remote.pd which takes care of all this and also looks much tidier in your patches.
Using the abstraction is easy: Insert pd-remote into the patch you're working on, and (optionally) connect a

pdluax reload message (without the ; prefix) to the inlet of the abstraction. In fact any of the variations of

reload messages discussed above will work, if you remove the ; prefix. Now you can just click on that

message to reload your script files, and the abstraction will also respond to such messages on port 4711 (the
port number can be changed in the abstraction if needed).

Here's how that looks like in a patch:

; pdluax reload foo, reload bar

49 / 53

NOTE: To make Pd find the pd-remote.pd abstraction without having to copy it to your project directory, you
can add the pdlua external directory (which is where the abstraction gets installed) to your Pd library path,
either in your Pd setup, or inside the patch with a declare -stdpath object, as shown above.

The pd-remote.el file can be installed in your Emacs site-lisp directory if needed. However, the easiest way to
install it is from MELPA, a large repository of Emacs packages. Please also check the pd-remote repository on
GitHub for the latest pd-remote version and further details. This also includes a pointer to a Visual Studio Code
extension written by Baris Altun which can be used as a replacement for pd-remote.el if you're not familiar
with Emacs, or just prefer to use VS Code as an editor.

And here's a little gif showing the above patch in action. You may want to watch this in Typora or your favorite
web browser to make the animation work.

50 / 53

https://melpa.org/
https://github.com/agraef/pd-remote
https://www.typora.io/

So there you have it: Not one, not two, but three different ways to live-code with Pd-Lua (or four, if you count
in the pdlua object). I'd say that pdx.lua is by far the most advanced and user-friendly solution among these,

but you can choose whatever best fits your purpose and is the most convenient for you.

Object reinitialization in pdx.lua

If pdx.lua reloads a script file, it normally does not run the initialize method. This is by design, as we want
the reload process to be as smooth as possible while running a patch, and invoking the initialize method

could potentially be quite disruptive, as it usually reinitializes all your member variables.

However, pdx.lua has another trick up its sleeve if you do need some kind of custom reinitialization. There are
two callback methods that you can implement, prereload and postreload which will be invoked

immediately before and after reloading the script file, respectively. Either method can be used to reinitialize
your object during reloading in any desired way. The only difference between the two methods is that
prereload still runs in the old script, while postreload executes the new code which has just been loaded.

Typically you'd use prereload to perform any required bookkeeping or state-saving before the script gets

loaded, and postreload for custom initialization afterwards.

In particular, these callbacks can change any member variables, either directly or by invoking other methods.
The most important use case probably is changing the inlets and outlets variables, in order to adjust the
inlet/outlet configuration of your object on the fly. The easiest way to do this is to just call the initialize

method of your object from postreload . Taking the luatab object as an example again, you might just add

the following method to the luatab.pd_lua script:

Now, if you need to change the number of inlets and outlets of the object, you can just modify the definitions
of inlets and outlets in your initialize method and reload. Easy as pie.

In the tutorial examples you'll find the pdxtest patch and Lua script which demonstrate the use of prereload
and postreload in live coding. Instructions can be found in the script. Try it!

function luatab:postreload()

 self:initialize()

end

51 / 53

af://n404

Live coding and dsp

One caveat about using any of the above live-coding solutions in conjunction with Pd-Lua's signal processing
capabilities is in order. When the Lua code of an object class gets reloaded, the existing code is replaced
immediately. There isn't any kind of automatic "cross-fade" between old and new code. If you change the
perform method of that class, there may well be discontinuities in the generated output signals which result

in audible clicks. This won't matter much if you're just developing an object in your studio. But live on stage
you may want to avoid this -- unless you accept or even cherish such glitches as part of your live performance.

There are ways to work around this issue, however. To demonstrate this, the tutorial examples include the
following live-xfade.pd patch:

The foo~ and bar~ objects in this example are essentially the same, with some minor variations in the sound

generation parameters. The particular sounds in this example are not important, each object just outputs a
random walk of sine waves of varying frequencies with some phase distortion. But they will produce clicks
when switching them abruptly, thus we need a smooth cross-fade between the two sound sources. This is
handled by the luaxfade~ object from the Signals section.

What's special here is that the transitions are being triggered automatically, by the received reload messages. By
these means, you can edit, say, the foo~ object while the bar~ object is playing, then save your edits and

send a reload message. At this point the new code for foo~ is loaded while the cross-fade from bar~ to

foo~ is initiated at the same time.

This method obviously requires some preparation and diligence when being used live on stage. Having some
kind of automatic cross-fade functionality for dsp objects baked into Pd-Lua's run-time system would make
this a lot easier. Maybe this can be provided by pdx.lua in a future release.

52 / 53

af://n410
af://n417

Conclusion
Congratulations! If you made it this far, you should have learned more than enough to start using Pd-Lua
successfully for your own projects. You should also be able to read and understand the many examples in the
Pd-Lua distribution, which illustrate all the various features in much more detail than we could muster in this
introduction. You can find these in the examples folder, both in the Pd-Lua sources and the pdlua folder of
your Pd installation.

The examples accompanying this tutorial (including the pdx.lua, pdlua-remote.el and pdlua-remote.pd files
mentioned at the end of the previous section) are also available for your perusal in the examples subdirectory
of the folder where you found this document.

Finally, I'd like to thank Claude Heiland-Allen for creating such an amazing tool, it makes programming Pd
externals really easy and fun. Kudos also to Roberto Ierusalimschy for Lua, which for me is one of the best-
designed, easiest to learn, and most capable multi-paradigm scripting languages there are today, while also
being fast, simple, and light-weight.

53 / 53

af://n417

	A Quick Introduction to Pd-Lua
	Why Pd-Lua?
	Installation
	A basic example
	Where your Lua files go
	Creation arguments
	Log messages and errors
	Lua errors

	Inlets and outlets
	Inlets
	Outlets

	Fibonacci number example
	Using arrays and tables
	Using clocks
	Using receivers
	Signals and graphics
	Signals
	Example 1: Mixing signals
	Example 2: Analyzing a signal
	Example 3: Generating a signal
	Real-world example: Cross-fades

	Graphics
	Getting started: A basic dial object
	Adding an outlet
	Mouse actions
	More dial action: clocks and speedometers

	Live coding
	pdlua
	pdluax
	dofile and dofilex
	pdx.lua
	Object reinitialization in pdx.lua
	Live coding and dsp

	Conclusion

